|
Biological network inference is the process of making inferences and predictions about biological networks. ==Biological networks== In a topological sense, a network is a set of nodes and a set of directed or undirected edges between the nodes. Many types of biological networks exist, including transcriptional, signalling and metabolic. Few such networks are known in anything approaching their complete structure, even in the simplest bacteria. Still less is known on the parameters governing the behavior of such networks over time, how the networks at different levels in a cell interact, and how to predict the complete state description of a eukaryotic cell or bacterial organism at a given point in the future. Systems biology, in this sense, is still in its infancy. There is great interest in network medicine for the modelling biological systems. This article focuses on a necessary prerequisite to dynamic modeling of a network: inference of the topology, that is, prediction of the "wiring diagram" of the network. More specifically, we focus here on inference of biological network structure using the growing sets of high-throughput expression data for genes, proteins, and metabolites. Briefly, methods using high-throughput data for inference of regulatory networks rely on searching for patterns of partial correlation or conditional probabilities that indicate causal influence.〔 〕〔 〕 Such patterns of partial correlations found in the high-throughput data, possibly combined with other supplemental data on the genes or proteins in the proposed networks, or combined with other information on the organism, form the basis upon which such algorithms work. Such algorithms can be of use in inferring the topology of any network where the change in state of one node can affect the state of other nodes. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Biological network inference」の詳細全文を読む スポンサード リンク
|